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The maintenance of bone homeostasis is a dynamic
equilibrium of bone formation by osteoblasts and re-
sorption of the bone matrix by osteoclasts.1 Shifts in
this equilibrium toward the excessive resorption of bone
matrix produce clinical manifestations such as os-
teoporosis, Pagets disease, and certain types of arthritis.
Over the past several years cysteine proteases have
been suggested to play a role in the osteoclast-mediated
resorption of the bone matrix.2 Recently it has been
shown that cathepsin K (EC 3.4.22.38), a cysteine
protease of the papain superfamily, is both selectively
and highly expressed in osteoclasts.3 The implication
of this abundant and selective expression suggests that
this enzyme may be playing an important and specific
role in the resorption phase of bone remodeling. Inhibi-
tion of this enzyme may therefore be a potential strategy
for therapeutic intervention in diseases of excess bone
resorption. Further support for this hypothesis is that
mutations in the gene which encodes for this enzyme
are associated with a rare autosomal disorder of bone
remodeling known as pycnodysostosis.4 Also, Yama-
mura and co-workers have shown that a cathepsin K
antisense construct inhibits osteoclastic bone resorption
in pit formation.5

A series of potent, reversible inhibitors of cathepsin
K based on a 1,3-bis(Cbz-Leu-amino)-2-propanone tem-
plate has recently been disclosed from these laborato-
ries.6 The design of these inhibitors was based on the
observation that two aldehyde inhibitors, leupeptin (Ac-
Leu-Leu-Arg-H) and Cbz-Leu-Leu-Leu-H, bound in op-
posite directions in the active site of papain. In an effort
to design more potent inhibitors of cathepsin K, we have
attempted to further exploit this design element by
incorporating the 1,3-bis(Cbz-Leu-amino)-2-propanone
inhibitor template 1 into conformationally constrained
ring systems (see Figure 1). Historically, the introduc-
tion of a conformational constraint has been used to
capture a bioactive orientation of a molecule.7

Modeling experiments based on the crystal structure
of inhibitor 1 bound to the active site cysteine of

cathepsin K revealed that the enzyme could potentially
accommodate cyclization of the 1,3-diamino ketone
template in two alternative fashions with no deleterious
steric interactions with the peptide backbone residues.8
As seen in Figure 1, cyclization of 1 along path A would
produce the 2,5-diaminocyclopentanone and 2,6-diami-
nocyclohexanone inhibitors 2 and 3. No overall reor-
ganization of the original 1,3-diamino ketone template
is observed in these analogues. Alternatively, cycliza-
tion along path B would provide the 3-aminopyrrolidi-
none and 4-aminopiperidinone inhibitors 4 and 5,
respectively. Molecular modeling revealed that this
cyclization produces a change in the conformation of the
original 1,3-diamino ketone substructure. All four of
the proposed conformationally constrained scaffolds 2-5
have been modeled as tetrahedral adducts with the
active site cysteine 25 of cathepsin K. The interactions
between the inhibitor and enzyme have been optimized
by overlapping the tetrahedral adducts with that from
the inhibitor 1/cathepsin K crystal structure, adjusting
torsion angles to mimic the conformation of 1 bound to
the enzyme. No apparent deleterious enzyme/inhibitor
interactions were seen. Prediction of the binding of
inhibitors using path B is much less obvious than for
path A. Indeed, the exceptional differences in potency
achieved by the analogues of path B compared to those
of path A were not predicted and remain a matter of
conjecture despite the extensive structure data avail-
able.

The designed inhibitors were synthesized as outlined
in Scheme 1. Compounds 3 and 2 were synthesized via
bis-acylation of the known racemic trans-1,3 diamino-
2-cyclohexanol (7)12 and by analogy the trans-1,3-
diamino-2-cyclopentanol (6) with Cbz-leucine and HBTU
to give the alcohols 9 and 8. Jones oxidation gave the
desired ketones 3 and 2. The diastereomers of 2 were
not separable and were therefore tested as a mixture.
The diastereomeric mixture 3 was separable by silica
gel chromatography, and each diastereomer was char-
acterized as 1,3-trans by measuring the proton coupling
constants (J1ax,2ax ) 6.8 Hz and J1ax,2eq ) 3.3 Hz) of the
corresponding ketone-derived alcohols (NaBH4/CH3OH).
On the basis of circular dichroism studies (n to π*
transitions of the cyclohexanones13), the absolute ste-
reochemistries were assigned as R,R for the first eluted
diastereomer and S,S for the second eluted diastere-
omer. Compounds 4 and 5 were synthesized as dia-
stereomeric mixtures by EDC-mediated acylation of the
amino alcohols 1014 and 1115 with Cbz-leucine. Depro-
tection of the Boc protecting group followed by a second
EDC-mediated acylation gave the diastereomeric alco-
hols 12 and 13. Oxidation of the alcohols was ac-
complished by employing either Jones reagent or Swern
oxidation to give ketones 4 and 5. The bis-Cbz-leucine-
4-aminopyrrolidinone diastereomers 4 were separated
by reverse-phase HPLC under neutral conditions (CH3-
CN/pH ) 7 phosphate buffer). These diastereomers
were not configurationally stable and equilibrated to the
original mixture upon concentration of the eluent.
HPLC separation of the diastereomers of 5 revealed the
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presence of two diastereomers plus a third slower
eluting compound. Attempted isolation of this slower
eluting compound was not successful as it rapidly
reverted to a mixture of three compounds. Mass
spectral analysis revealed an M + 18 molecular ion
indicative of the hydrate of ketone 5. Hydration of the
ketone was not observed in the attempted isolation of
4. The diastereomers of 5 were isolated and were also
found to equilibrate to a mixture upon concentration of
the eluent.

Cathepsin K inhibition and selectivity data are pre-
sented in Table 1.16 Compound 2, which was tested as
a mixture of diastereomers, possessed weak time-
dependent inhibitory activity with a kobs/[I] of 56 M-1

s-1. Each diastereomer of 3 was found to have weak

inhibitory activity against cathepsin K with Ki,app of 16
µM (R,R) and 15 µM (S,S), respectively. Compounds 4
and 5 were potent inhibitors of cathepsin K with Ki,app
of 2.3 and 2.6 nM, respectively. Diastereomers 4 were
found to selectively inhibit cathepsin K over cathepsins
B and L. As a diastereomeric mixture these inhibitors
were greater than 400-fold selective for cathepsin K
over cathepsin B and approximately 17-fold selective
over cathepsin L. The six-membered ring cyclic diamino
ketones 5 were somewhat less selective than 4. The
alcohols 12 and 13 were approximately 1/3000 as potent
as the ketone analogues. This is in agreement with a
transition-state analogue mechanism of action for the
ketone analogues.17 The X-ray crystal structure of
inhibitors 4 with cathepsin K confirmed this hypothesis

Figure 1. Conformationally constrained diamino ketone inhibitors of cathepsin K.

Scheme 1. Synthesis of Cyclized Cyclic 1,3-Diamino Ketone Inhibitors 2-5a

a Reagents and conditions: (1) HBTU, Cbz-leucine, DMF; (2) Jones reagent, acetone; (3) Cbz-leucine, EDC, HOBt, CH2Cl2; (4) HCl/
EtOAc; (5) DMSO, (COCl)2, TEA, CH2Cl2, -78 °C to rt.
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as it is consistent with a covalent interaction of the
active site cysteine 25 with the carbonyl group of 4 to
form a tetrahedral adduct (Figure 2). The hemith-

ioketal was flanked by the N1 Cbz-leucine which was
observed to bind on the unprimed side of the active
site.18 The isobutyl group of the leucine was bound in

Table 1. Cathepsin K, B, and L Inhibition Data

Communications to the Editor Journal of Medicinal Chemistry, 1998, Vol. 41, No. 19 3565



the hydrophobic S2 pocket which was formed from the
side-chain atoms of Leu 160, Ala 134, and Met 68. A
hydrogen bond between the amide carbonyl of the N1
Cbz-leucine and Gly 66 of the protein backbone is also
seen in the X-ray structure of 4 complexed with the
enzyme. The N3 Cbz-leucine was seen bound on the
primed side of the active site. The stereochemistry of
the diastereomeric C3 center was consistent with the
R configuration in the X-ray crystal structure and may
therefore represent the more potent of the two diaster-
eomeric forms. Alternatively, this stereochemical pref-
erence may be a function of crystal packing forces.

A possible rationalization for the dramatic difference
in activities for the compounds resulting from the two
different modes of cyclization is that, despite favorable
modeling predictions and the presence of the correct
specificity elements required for initial Michaelis bind-
ing in both sets of compounds, inhibitors 4 and 5 have
the appended N1 amine group oriented in such a fashion
as to allow for the facile attack by the active site cysteine
nucleophile on the electrophilic carbonyl of the designed
inhibitors. This may not be true for inhibitors 2 and 3
in which the diamino ketone template of 1 has es-
sentially been substituted in both the R and R′ positions.
This substitution may cause a steric interaction which
was unforeseen in the original modeling experiments
on the thiol adducts.

As seen in Table 1, analogue 14 in which a methylene
group has replaced the tertiary amide carbonyl moiety
retains the overall potency of the parent cyclic diamino
ketone 4. The X-ray cocrystal structure of inhibitor 14
with cathepsin K shows no hydrogen bond in this region
of the inhibitor/protein complex (see Figure 3). This
change to a reduced amide has served to remove the
amide linkage and simultaneously increase overall
aqueous solubility. The leucine binding on the unprimed
side of the active site of the enzyme could be replaced
with several peptidomimetics and still retain the overall
potency of this class. Analogue 15, which incorporates
a p-phenoxybenzamide peptidomimetic, results in a 13-
fold loss of activity relative to 4. Compound 16, in which
the leucine binding on the primed side of the active site

has been replaced with the same p-phenoxybenzamide,
is 30-fold less active relative to analogue 15. Incorpora-
tion of the sulfonamide into the peptidomimetic gives
the potent 4-phenoxybenzenesulfonamide derivative 17.
This modification has removed most of the structural
liabilities commonly associated with peptide amide
linkages. Complete removal of the peptide elements of
the Cbz-leucine via the incorporation of a reduced amide
while retaining the recognition element of the isohexyl
group gave rise to analogue 18 which incorporates the
N-isohexyl peptidomimetic.

In this communication we have disclosed a potent
class of conformationally constrained ketone inhibitors
of the cysteine protease cathepsin K. Peptidomimetic
elements have been incorporated onto this scaffold
which remove hydrogen bonding, a feature postulated
to reduce rates of intestinal transfer.19 More detailed
in vivo evaluation of such inhibitors will be the subject
of future studies. The inhibition of other proteases may
be possible with this cyclic diamino ketone template by
the incorporation of the appropriate specificity elements
required by these enzymes.
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